
DOCUMENT RHONE

ED 100 372 IR 001 471

AUTHOR Wesselkamper, Thomas C.
TITLE. The Logical Foundations of Microlanguages. Technical

Report CS74,120-P.
INSTITUTIOW Virginia Polytechnic Inst. and State Univ.,

Blacksburg. Dept. of Computer Science.
REPORT NO TR-CS74n2O-R
PUB DATE Nov 74
NOTE 15p.

EDRS PRICE MF-$0.75 HC-$1.50 PLUS POSTAGE
DESCRIPTORS *Computer Programs; Computers; Computer Science;

Programing; *Programing Languages
IDENTIFIERS Assembler Languages; Machine Design; Machine

Language; *Microprograming

ABSTRACT
After consideration of two recent examples of

instruction sets for microprogramable computers, the article sketches
known and new results about complete sets of functions which appear
to be applicable to microlanguage development. Some needed areas of
research are pointed out. Functional completeness is linked to
research in control primitives for machines. (Author)

I
BEST COPY AVAILABLE

iv e4MComputer Science Department (
,21,7r,,Atr

Virginia Polytechnic Institute,
and State University

Blacksburg, Virginia 24061

Technical Report CS74020R

THE LWICAL FOUNDATIONS OF MICROLANCUACES

Thomas C. Wesselkamper

U S DEPARTMENT OF HEALTH.
EDUCATION A WELT ARE
NATIONAL INSTITUTE OF

EDUCATION
Nth .%41 N' Hi f N k1 PIM

Pt 0 EV At '1 V A k1e f [VI o I WON.
'641 P1 14%.1N oatf.ANI/A T n IN OW itINA' N. N,. n1 . IF d Ok'''NtON'.
-,:01 I, 1)1` No, NI' '0.410.1 v tif
.1%' ,I I .1 At NA' ''NA, NNT.T.:5r OI: A' (IN giN r

November 1974

Department of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
24061

Abstract

After the consideration of two recent examples of instruction sets for

microprogrammable comi,uturs, the article sketches known and new results

about complete sets of functions which appear to be applicable to micro-

language development. Some needed areas of research are pointed out.

Functional completeness is linked to research in control primitives for

machines.

I. The Problem

A. Electronic digital computers began in a world of vacuum tubes and diodes.

They were endowed with sets of machine instructions heavily influenced by the

available electronics of the time. It is not possible that anything else could

have occured.

In nearly three decades since, technology has changed mightily. Machines

have become word addressable; their electronic components moved through transistor

technology into integrated circuit technology. Sets of machine instructions

have grown: IBM's System/370 features over one hundred fifty instructions.

Recent years have witnessed a growing interest in microprogramming. Often

this represents a return to the consciousness that there is a machine beneath

all those layers of high level language.

This interest in microprogramming and the correlative ability to easily

emulate machines in what has come to be called firmware makes it possible to

ask a set of questions which (logically) should have been asked before the first

machine was constructed. It is now possible to ask: What should a machine

be able to do?

B. Two recent examples exhibit the current state of the pragmatic answer

to th!s question. The first is the Weisbecker machine [1]. In an excellent

paper Joe Weisbecker "describes a simplified microcomputer architecture that otters

maximum flexibility at minimum cost." [1, p. 41] We are told:

"The ALU is an 8-bit logic network for performing binary acid,
subtract, logical 'and', 'or', and 'exclusive or' on two 8-bit
operands. One operand is the bus byte and the other Is contained
in the D register. The D register can also be shifted right one

bit position. Add, subtract, and shift operations set a one hit
overflow register ... which can be tested by a branch InstruetIon."
[1, p. 43)

No attempt is made to explain this choice of functions. They provide a tvpical

example of the operations provided by designers.

The second recent example is a description of HALL [2], an assembler level

language for the HYRMAN hardware simulator [3]. The HALL machine possesses nine

arithmetic functions (binary and decimal addition and subtraction, 'and', 'or'

'exclusive or', left shift and right shitt) and fourteen status instructions.

These are given in Table I, below. (it should be noted that HALL does deimal

arithmetic in a fashion analogous to the old IBM 1620 or to the S/360-3/0

"packed decimal" arithmetic.)

That these designs have not varied significantly in thirty years may he seen

by comparing them to the instructions proposed by John von Neumann for the

EDVAC machine in 1945. [11] See Table 11, below. This in spite of the dual

facts that electronics can support much more varied design and that the cla,ls

of problems to which computers have come to be applied is far wider than was.

envisioned when the first computers were designed for numeric work.

ii. General Purpose Computers and Complete Sets of Functions

A. This paper examines son of the possible answers to the n:

!Mould a machine be able to do! ;,:e are concerned that while one hundre-! ti!t:

instructions are quite likely to be sufficient for any job, they are not

to be necessary. Even if one arvues that they are desirable at some ! -t

machine definition, they are not desirable at the microlevel.

We assume that when a computer manufacturer says that his rachise A "..eneral

purpose machine" he means that it functionally complete over the t it:; keerei .

More specifically, we assume a hypothetical machine is fixed word size, not

necessarily binary. The value of a word ranges over a set E(k) {0, 1, ..., k-1}.

A machine M with words in E(k) is complete if whenever n is a natural number and

f: En(k) E(k) is a function over E(k) then/for any set of values (x1, x2,..., xn)

it is possible to evaluate f(xl, x2,..., xn) on M.

This notion of completeness is implied by, but not necessarily equivalent to,

the completeness with constants of the set A of those machine operations which

have the property of being functions over E(k). This is opposed to those machine

operators which are control operators, for example, a branch instruction. In

Section III of this paper we survey some of the known results about complete sets

of functions.

B. In the practical area nf machine design two other questions arise in

the process of evaluating a proposed instruction set:

(1) Can normal human beings (as opposed to multiple-valued logi,:ians)

write programs using the proposed instruction set? The pragmatists of the last

thirty years must be granted that their instruction sets (however inelegant)

have been useful to write programs. Human factors suggest that the functions

chosen need to have intuitively simple definitions and need to possess "nice"

algebraic properties, such as associativity and commutativity.

(2) What are the minimal storage and time requirements needed to

evaluate on machine M a given set of functions over E(k)? From the point of

view of machine design the optimal set of functions is not a minimal set, but

a set that minimizes time and storage requirements over some subset of functions

which are "interesting" in one or more applications areas.

lll. Some Theoretical and. xperimental Results

A. This author investigated an instruction set with a single operator:

if x = y;
Sxyz =

x, if x 0 y.

For any natural number k, this function is complete over E(k). [4] The choice

of operator was inspired by the work of Markov. It is possible (if nerve-racking)

to program this way. The writer refrained from publishing the fact that for some

one place functions over E(k), the program to evaluate the function takes up at

least 19k words of storage.

B. At this Symposium in 1974, this writer showed that for a natural number

k, there exists a set of three abelian semigroup operations on E(k) such that the

!Jet of functions defined by these operations is complete. [5] Dr. J.C. Muzio has

since reduced the number to two and this writer has shown that it cannot be

reduced to one.

Specifically, this author showed that if:

Axy - x y (mod k);

Mxy = xy (mod k); and

0, if x = 0 or y = 0, not both;
Jxy =

1, otherwise;

then .A, M, J} is complete with constants over E(k). Muzio has shown that {A, J} is

complete with constants.

An attempt was made over the last year to program with the set iA, 4, J}.

'al went well until it was necessary to use some property related to the ordering

E(II obtained by relativizing the usual ordering of the integers to E(k). Most

Fitt.!) the user wants, not E(k) = {0, 1,..., k-1}, but rather

'(k) {-(k/2), 0, [(k-1)/2] }, (where square brackets denote the

0-eatest integer" function).

C. Order can be handled nicely by introducing the "signum" function:

1, if -[k/2] < x < -1;

S*x 0, if x - 0;

1, if 1 < x < [(k-1)/2].

in the usual infix notation we have:

.Jxy u (S*((S*xS*y)
2
+ (S*x)

2
+ (S*y)

2
- 1))2;

tor !, A = y = 0, then Jxy (S*(0 + 0 + 0 - 1))
2

= 1;

lnd i f x = 0, y 0 0, then Jxy = (S*(0 + 0 + 1 - 1))
2

= 0;

and i f x 0 0, y 0 0, then Jxy = (S*(1 + 1 + 1 - 1))2 = 1.

LeTice the set {A, M, Sts} is complete with constants.

!h results of programming with {A, M, J, Sie} have been very pleasant. This

upp,urs to be closer to the notion of an optimal set than any of the minimal sets

tried. It has not appeared practical to attempt to use only iA, M, S*I.

D. if k = pn, for some prime p and natural number n, then the set of functions

, ,.. defined by:

fxy = xy; gxy = x + v;

r, addition and multiplication are defined over GF(p), is complete with constants.

:4-t the polynomials in j indeterminates with exponents in the range [0, k-1]

.:elv represent the functions: EJ(k) + E(k).

:here has been extensive work in the field of logic desi.,m using; r;alois

-..-r,Itions as primitives [6, 7, 8).

As was the case above with the ring Z(k), the problem of inducing an order

relation onto GF(pn) is formidible, that is, the polynomial which corresponds to

the order relation:

x < y

is very long. It appears that the addition of an ordering function might be on

the path to optimizing the set of functions.

Since the great body of classical work on divided difference methods is

applicable in any field, work with Galois operations has a place to start.

All present computers are either binary or ternary. Hence the Galois fields

involved are of characteristic 2 or 3, respectively. This suggests that nothing

is to be gained by using subtraction as a primitive. The same is not clear about

the inclusion of division as a primitive operation. Programming with rational

functions might be far easier than with polynomials alone. There appears to be

little research in this area. This investigation into rational functions appears

to this writer to be an important research direction.

E. It appears to be only of theoretical interest that every simple nonabelian

group is complete. (9]

IV. From Functions Through Algorithms to Programs

It is not realistic to develop a computer which evaluates functional expressions

of arbitrary length. The fundamental notion of a digital computer links it to the

notion of an algorithm.

An algorithmic language requires, in addition to the logical operations of

the kinds treated earlier in this paper, some instructions which control the flow

of the program realizing an algorithm. It is sufficient to provide a "goto"

)

operation which provides transfer of.control to a location specified by its

argument. This must be accompanied by the labelling of statements. The complete

syntax for such a language which the writer has successfully used is contained

in Table

Flow of control primitives are as important as logical primitives in the

design of an optimal language. Their analysis does not appear to be within

the scope of classical multiple-valued logic.

The most important study of the effect of the choice of control primitives

on the optimality of a language appears to be that of Dr. Louise Jones i10].

V. General and Specific Research Directions

A. Released by IC technology from the old constraints on possible logic and

control primitives, how do we develop a set of primitives which are easy to use

..and which, when applied to known and future applications areas, produce efficient

algorithms in terms of size and length of computation?

B. What would be good primitives for list-processing? for string-handling?

C. Specifically,. how may the ring gpn) be represented over CF(pn), both

as polynomials and as rational functions? Can ordering be achieved inexpensively

as a rational function?

Mnemonic

Arithmetic Unit

Table I -- Operations for HALL

Operation Code (11ex)

NO No operation 0
+8 Binary addition X + Y 1

-B Binary subtraction X - Y 2

+D Decimal addition X + Y 3

-D Decimal subtraction X - Y 4

AN And X Y 5

OR Or X Y 6

EX Exclusive or X Y 7

SL Shift X left one bit 8

SR Shift X right ono bit 9

Status Unit

BiTO Set bit to 0 0

BITI Set bit to 1 1

IBIT Invert bit 2

DICO Sept digit to 0 3

DIGI Set digit to 1 4

IDIG Invert digit 5

HOOP No action 7

BZIIO Set bit Z = 0* 8

IMO Set bit A = 0 9

DZIO Set digit Z = 0 A
IBZO Invert bit Z = 0 B

BZHD Set bit 0 L Z e 9** C

MD Set bit 0 '' A 7 9 U

DUD Set digit 5 .* 7 .* 9 E

* Set bit to 1 if Z = 0.
** Set bit to 1 if Z is a digit, I.e., 1...; a number betwoun 0 and 9.

[2, p. 2241

Table II -- The intltruction Set Proposed for the EDVAC

Instructions consist of arithmet:c instruction- <variatioW..

They operated on registers I, J, and A.

Arithmetic Instructions

AD Set A I + J.

SB Set A 4- I - J.

ML SetA4A+IxJ (rounded)

DV Set A 4 I/J (rounded)

SQ Set A 4-- Vi(rounded)

11 Set A 4. I

JJ Set A 4. J

SL Lf A 0, set A 4- I; if A < 0, set A J.

DB Set A binary equivalent of decimal number I.

BD Set A 4- decimal equivalent of binary number I.

Variations

H Do the operation as described above, holding the result

in A.

A Do the operation as described above, then set

J I, I - A, A 0.

S Do the operation as described above, then store the
result A into memory location yx and set A + 0.

F

N

Do the operation as described above, then store the
result into the word immediately following this in-
struction, set A 4 0, and perform the altered instruction.

Do the operation as described above, then store the
result into the word immediately following this in-
struction, set A 0, and skip the altered instruction.

[11, pp. 250-1]

Table III -- The BNF Grammar for a Rather Primitive Language

<program> ::= <decl list' / <statement list>

decl list> ::= <decl> 1 <decl> <decl list>

<decl> ::= <allocation> 1 <initialization>

<allocation> ::= dec <dec identifier> 1 dec <array designator>

<array designator> ::= <dec identifier> (<number>)

<dec identifier> ::= <identifier>

<initialization> ::= <allocation> <number>

<statement list> ::= statement 1 <statement> <statement list'

<statement> ::= <label> : 'simple statements.

<label> ::= <number>

<simple Statement> ::= assignment> 1 <goto>

<assignment> ::= store <arg> at <name>

<goto> ::= goto, <arg

<arg> ::= <expression> 1 <name> 1 <number>

<expression> ::= <op. <arg> <arg>

<op> ::= Alk1111"

<name ::= <array element> 1 <identifier'

<array element., ::= 'identifier' (number>)

Bibliography

1. Joe Weisbecker, "A Simplified Microcomputer Architecture", IEEETC

(March, 1974) pp. 41-7.

2. R. H. Evans, L. H. Moffett, and R. E. Merwin, "Design of Assembly

Level Language for Horizontal Encoded Microprogrammed Control Unit",

Micro-7 Preprints (September, 1974) pp. 217-224.

3. A. J. Nichols, III, "A Microprogramming Framework for Experimental

Machine Design", SIGMICRO Newsletter, (July, 1971) pp. 17-21.

4. T. C. Wesselkamper, "A Sole Sufficient Operator", NDJFL, (January,

1975) pp. 86-88.

5. T. C. Wesselkamper, "Some Completeness Results for Abelian Semigroups

and Groups", Proceedings of the 1974 International Symposium on
Multiple-valued Logic, (May, 1974) pp. 393-400.

6. James T. Ellison, Universal Function Theory and Galois Logic Studies

(ARCRL-72-0109) (Bedford, Mass.: Air Force Cambridge Research
Laboratories, 1972).

7. B. A. Christensen, J. T. Ellison, R. A. Eggan, Galois Polynomial

Generation (PX-7703) (St. Paul: Sperry Rand-Univac, 1972).

8. B. A. Christensen, Notes on Galois Logic Design (PX-10452) (St.

Paul: Sperry Rand-Univac,1973).

9. Heinrich Werner, "Finite Simple Nonabelian Groups are Functionally

Complete", Notices AMS, (August 1973) (*73T-A228), p. A-561.

10. Louise H. Jones, "Microinstruction Sequencing for Structured

Programming", Micro-7 Preprints (September, 1974) pp. 277-89.

11. Donald E. Knuth, "Von Neumann's First Computer Program",

Computing Surveys, (December, 1970), pp. 247-60.

